Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Infect Dis ; 23(1): 248, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2290462

ABSTRACT

BACKGROUND: Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-ß (TGF-ß) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS: This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-ß, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS: The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-ß serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS: These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-ß- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.


Subject(s)
COVID-19 , Interferon Type I , Neoplasms , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L515-L524, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2108362

ABSTRACT

Failure to regenerate injured alveoli functionally and promptly causes a high incidence of fatality in coronavirus disease 2019 (COVID-19). How elevated plasminogen activator inhibitor-1 (PAI-1) regulates the lineage of alveolar type 2 (AT2) cells for re-alveolarization has not been studied. This study aimed to examine the role of PAI-1-Wnt5a-ß catenin cascades in AT2 fate. Dramatic reduction in AT2 yield was observed in Serpine1Tg mice. Elevated PAI-1 level suppressed organoid number, development efficiency, and total surface area in vitro. Anti-PAI-1 neutralizing antibody restored organoid number, proliferation and differentiation of AT2 cells, and ß-catenin level in organoids. Both Wnt family member 5A (Wnt5a) and Wnt5a-derived N-butyloxycarbonyl hexapeptide (Box5) altered the lineage of AT2 cells. This study demonstrates that elevated PAI-1 regulates AT2 proliferation and differentiation via the Wnt5a/ß catenin cascades. PAI-1 could serve as autocrine signaling for lung injury repair.


Subject(s)
COVID-19 , Plasminogen Activator Inhibitor 1 , Wnt-5a Protein , beta Catenin , Animals , Mice , Antibodies, Neutralizing , beta Catenin/metabolism , Down-Regulation , Wnt Signaling Pathway/physiology , Wnt-5a Protein/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Alveoli/cytology , Cell Proliferation
3.
Biology (Basel) ; 11(4)2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1809685

ABSTRACT

An impaired coagulation process has been described in patients with severe or critical coronavirus disease (COVID-19). Nevertheless, the implication of coagulation-related genes has not been explored. We aimed to evaluate the impact of F5 rs6025 and SERPINE1 rs6092 on invasive mechanical ventilation (IMV) requirement and the levels of coagulation proteins among patients with severe COVID-19. Four-hundred fifty-five patients with severe COVID-19 were genotyped using TaqMan assays. Coagulation-related proteins (P-Selectin, D-dimer, P-selectin glycoprotein ligand-1, tissue plasminogen activator [tPA], plasminogen activator inhibitor-1, and Factor IX) were assessed by cytometric bead arrays in one- and two-time determinations. Accordingly, SERPINE1 rs6092, P-Selectin (GG 385 pg/mL vs. AG+AA 632 pg/mL, p = 0.0037), and tPA (GG 1858 pg/mL vs. AG+AA 2546 pg/mL, p = 0.0284) levels were different. Patients carrying the CT F5-rs6025 genotype exhibited lower levels of factor IX (CC 17,136 pg/mL vs. CT 10,247 pg/mL, p = 0.0355). Coagulation proteins were also different among IMV patients than non-IMV. PSGL-1 levels were significantly increased in the late stage of COVID-19 (>10 days). The frequencies of F5 rs6025 and SERPINE1 rs6092 variants were not different among IMV and non-IMV. The SERPINE1 rs6092 variant is related to the impaired coagulation process in patients with COVID-19 severe.

SELECTION OF CITATIONS
SEARCH DETAIL